
GigaScience
 

An Analysis of Security Vulnerabilities in Container Images for Scientific Data Analysis
--Manuscript Draft--

 
Manuscript Number: GIGA-D-20-00311

Full Title: An Analysis of Security Vulnerabilities in Container Images for Scientific Data Analysis

Article Type: Technical Note

Funding Information: Canada Research Chairs Dr Tristan Glatard

Fonds de Recherche du Québec - Nature
et Technologies

Dr Tristan Glatard

Abstract: Software containers greatly facilitate the deployment and reproducibility of scientific
data analyses on high-performance computing clusters (HPC). However, container
images often contain outdated or unnecessary software packages, which increases the
number of security vulnerabilities in the images and widens the attack surface of the
infrastructure. This paper presents a vulnerability analysis of container images for
scientific data analysis. We compare results obtained with four vulnerability scanners,
focusing on the use case of neuroscience data analysis, and quantifying the effect of
image update and minification on the number of vulnerabilities. We find that container
images used for neuroscience data analysis contain hundreds of vulnerabilities, that
software updates remove about two thirds of these vulnerabilities, and that removing
unused packages is also effective. We conclude with recommendations on how to
build container images with a reduced amount of vulnerabilities.

Corresponding Author: Tristan Glatard

CANADA

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: Bhupinder Kaur

First Author Secondary Information:

Order of Authors: Bhupinder Kaur

Mathieu Dugré

Aiman Hanna

Tristan Glatard

Order of Authors Secondary Information:

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


Placeholder
for OUP logo
oup.pdf

GigaScience, 20xx, 1–6

doi: xx.xxxx/xxxx
Manuscript in Preparation

An Analysis of Security Vulnerabilities in Container
Images for Scientific Data Analysis
Bhupinder Kaur1, Mathieu Dugré1, Aiman Hanna1 and Tristan Glatard1

1Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada

Abstract
Software containers greatly facilitate the deployment and
reproducibility of scientific data analyses on
high-performance computing clusters (HPC). However,
container images often contain outdated or unnecessary
software packages, which increases the number of
security vulnerabilities in the images and widens the
attack surface of the infrastructure. This paper presents a
vulnerability analysis of container images for scientific
data analysis. We compare results obtained with four
vulnerability scanners, focusing on the use case of
neuroscience data analysis, and quantifying the effect of
image update and minification on the number of
vulnerabilities. We find that container images used for
neuroscience data analysis contain hundreds of
vulnerabilities, that software updates remove about two
thirds of these vulnerabilities, and that removing unused
packages is also effective. We conclude with
recommendations on how to build container images with
a reduced amount of vulnerabilities.

Key words: Containers; Docker; Singularity; Security Vul-
nerabilities; Neuroimaging.

Introduction

Software containers have emerged has an efficient solution to
deploy scientific data analyses on HPC clusters, due to their
portability, ease of use, and limited overhead. On HPC systems,
the Singularity [1] framework is often preferred to Docker due
to its secure handling of multi-user environments and conve-
nient support for Docker images. Singularity is now available
in dozens of HPC clusters around the world and routinely used
for Big Data analysis.

Taking advantage of core Linux kernel features such as
namespaces, control groups and chroot, containers isolate pro-
cesses from the host computer, and control the memory, CPU,
network and file-system resources assigned to them. How-
ever, containers still share the kernel, mounted file systems
and some devices with the host, which raises security con-

cerns [2, 3, 4] and opens the door to privilege escalation, denial
of service, information leak and other types of attacks [5].

Container images typically include full operating system
(OS) distributions in addition to data analysis software and
their dependencies. They are rarely updated due to concerns
that software updates will interfere with the results [6, 7]. Im-
ages also typically include more dependencies than required, to
make them easier to reuse between experiments. As a result,
over 30% of official images in DockerHub have been shown
to contain high-priority security vulnerabilities [8], images on
average contain over 180 vulnerabilities [9], and vulnerabilities
are often caused by outdated packages [10].

In this study, we focus on the vulnerabilities present in con-
tainer images deployed on HPC clusters for scientific data anal-
ysis, in particular in the neuroimaging domain. We address the
following questions:

What is the current amount of vulnerabilities in container images
deployed on HPC clusters? Vulnerabilities are possible attack vec-
tors that can seriously compromise the security of HPC clusters
and the integrity of user data. We report vulnerability scans
produced by four popular image scanning tools: Anchore, Vuls,
Clair, and Singularity tools.

Can the amount of vulnerabilities be reduced by updating the im-
ages? For many reasons related to reproducibility and the life-
cycle of research projects, container images deployed on HPC
clusters often include outdated software. We report on the ef-
fect of software updates on the amount of vulnerabilities found
in images.

Can the amount of vulnerabilities be reduced by minifying im-
ages? Container images often include more software packages
than necessary for a typical analysis. We report on the impact
of unused software packages on the presence of vulnerabilities.

The remainder of this paper describes the container images
and scanners used in our experiment, and our methodology for
updating and minifying images. Results present the vulnera-
bilities detected in container images, quantify the effectiveness
of updating and minifying images, and explain the differences
observed between scanners. In conclusion, we provide a set
of image creation guidelines for a more secure deployment of
containers on HPC clusters.

1

Manuscript Click here to access/download;Manuscript;paper.pdf

http://docker.com
https://www.editorialmanager.com/giga/download.aspx?id=105977&guid=41716e77-806f-4829-8730-1ebbd6611eaa&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=105977&guid=41716e77-806f-4829-8730-1ebbd6611eaa&scheme=1


2 | GigaScience, 20xx, Vol. 0, No. 0

OS Anchore Vuls Clair
Alpine Alpine-SecDB Alpine-SecDB Alpine-SecDB
CentOS Red Hat OVAL Database Red Hat OVAL Database and Red Hat Security Advisories Red Hat Security Data
Debian Debian Security Bug Tracker Debian OVAL Database and Debian Security Bug Tracker Debian Security Bug Tracker
Ubuntu Ubuntu CVE Tracker Ubuntu OVAL Database Ubuntu CVE Tracker
Table 1. Vulnerability databases used by scanners for different OS distributions. All scanners also refer to the National Vulnerability

Database (NVD) for vulnerability metadata.

Materials and Tools

We used container images from two popular application frame-
works, as well as four of the major image scanners.

Container Images

We scanned all container images available at the time of
this study on two containerization frameworks used in neuro-
science: BIDS apps [11] (26 images) and Boutiques [12] (18 im-
ages), totalling 44 container images. At the time of the study,
BIDS apps had 27 images, out of which one wasn’t available on
DockerHub. Boutiques had 49 images, however, only 23 unique
images were listed, out of which 3 couldn’t be retrieved and 2
were already included in BIDS apps. All the final 26 images
from BIDS apps were Docker images, whereas the 18 Boutiques
images contained 12 Docker images and 6 Singularity images.

Image Scanners

We compared the results obtained with four container image
scanners: Anchore, Vuls, and Clair to scan Docker images, and
Singularity Container Tools (Stools) to scan Singularity images.

Anchore is an end-to-end, open-source container security
platform. It analyzes container images and lists vulnerable OS
packages, non-OS packages (Python, Java, Gem, and npm), and
files. In our experiments, we used Anchore Engine version
0.5.0 through Docker image anchore/anchore-engine:v0.5.0,
and Anchore vulnerability database version 0.0.11.

Vuls is an open-source vulnerability scanner for Linux and
FreeBSD. It offers both static and dynamic scanning, and both
local and remote scanning. In our experiments, we used Vuls
0.9.0, executed through Docker image vuls/vuls:0.9.0 in re-
mote dynamic mode.

Clair is an open-source and extensible vulnerability scan-
ner for Docker and appc container images, developed by CoreOS
(now Container Linux), a Linux distribution to deploy container
clusters. We used Clair through Clair-scanner, a tool to fa-
cilitate the testing of container images against a local Clair
server. We used Clair version 2.0.6, executed through Docker
image arminc/clair-local-scan:v2.0.6. For the vulnerability
database, we used Docker image arminc/clair-db:latest, last
updated on 2019-09-18.

Singularity Tools (Stools) are an extension of Clair for Sin-
gularity images. Stools exports Singularity images to tar.gz
format, acting as a single layer Docker image to circumvent
the Docker-specific requirements in the Clair API. In our ex-
periments, we used Singularity Tools version 3.2.1 through
Docker image vanessa/stools-clair:v3.2.1. Since Stools uses
Clair internally for scanning, the vulnerability databases used
by Stools are the same as mentioned for Clair. To scan Singu-
larity images, we followed the steps mentioned in the Stools
documentation.

Vulnerability Databases

Scanners refer to two types of vulnerability databases (Table 1).
The first one is the Open Vulnerability and Assessment Lan-

guage (OVAL) database, an international open standard that
supports various OS distributions including Ubuntu, Debian
and CentOS but not Alpine. The second one are vulnerability
databases from specific OS distributions, such as Alpine-SecDB,
Debian Security Bug Tracker, Ubuntu CVE Tracker, or Red Hat
Security Data. In these databases, OS distributions often as-
sign a status to each vulnerability, to keep track of required
and available security fixes in different versions of the distri-
bution. Vuls uses OVAL databases for all distributions except
Alpine. On the contrary, Clair exclusively refers to distribution-
specific databases. Anchore uses OVAL only for CentOS, as
distribution-specific databases are assumed to be more com-
plete. It is also worth noting that there is no vulnerability data
for Ubuntu 17.04 and 17.10 distributions in the OVAL database,
since these distributions have reached end of life, meaning that
images with these distributions cannot be scanned with Vuls.

For CentOS images, Anchore and Clair give scanning results
using Red Hat Security Advisory (RHSA) identifiers, whereas
Vuls uses the Common Vulnerabilities and Exposures (CVE)
identifiers used in OVAL. We mapped RHSA identifiers to cor-
responding CVE identifiers, to allow for a comparison between
scanners.

Different vulnerabilities may be reported by scanners if
scanning experiments take place on different dates. To avoid
such discrepancies, we froze the vulnerability databases used
by these scanners as of 2019-09-25.

Image Update

A first approach to reduce the number of vulnerabilities in con-
tainer images is to update their packages to the latest version
available in the OS distribution. To study the effect of such
updates, we developed a script (available here) to identify the
package manager in the image, and invoke it to update all OS
packages. We updated images on 2019-11-05.

Image Minification

A second approach to reduce the number of vulnerabilities in
the images is to remove unnecessary packages, an operation
potentially specific to each analysis. We used the open-source
ReproZip tool [13] to capture the list of packages used by an
analysis. ReproZip first captures the list of files involved in the
analysis, through system call interception, then retrieves the
list of associated software packages, by querying the package
manager. We extend this list with a passlist of packages re-
quired for the system to function, such as coreutils and bash,
and with all the dependencies of the required packages, re-
trieved using Debtree. Repoquery could be used in RPM-based
distributions instead. Our minification script, available here,
installs ReproZip in the image to minify, runs an analysis to col-
lect a ReproZip trace, and finally deletes all unnecessary pack-
ages. We had used the Neurodocker tool initially, but it did not
affect the detected vulnerabilities as it was removing unused
files without using the package manager.

Using this approach, we minified five Debian- or Ubuntu-
based BIDS app images, using basic analysis examples found
in the applications documentation.

https://github.com/anchore/anchore-engine
https://github.com/future-architect/vuls
https://github.com/quay/clair
https://github.com/arminc/clair-scanner
https://github.com/singularityhub/stools
https://github.com/singularityhub/stools
https://github.com/singularityhub/stools
https://github.com/big-data-lab-team/container-vulnerabilities-paper/blob/master/Scripts/update
http://manpages.ubuntu.com/manpages/xenial/man1/debtree.1.html
https://linux.die.net/man/1/repoquery
https://github.com/big-data-lab-team/container-vulnerabilities-paper/tree/master/Scripts/minification
https://github.com/ReproNim/neurodocker


| 3

Results

Figure 1 presents our results. All the collected data
are available in our GitHub repository at https://github.
com/big-data-lab-team/container-vulnerabilities-paper with
a Jupyter notebook to regenerate the figures.

Detected Vulnerabilities

An important amount of vulnerabilities were found in the
tested container images (Fig 1-A), with an average of 460 vul-
nerabilities per image and a median of 321. In comparison, no
vulnerabilities were found in base Docker images ubuntu:20.04
and centos:7 after package update. Moreover, a significant
fraction of detected vulnerabilities are of high severity (CVSS
score >=7.0) and a few of them are of critical severity (CVSS
>= 9.0). Remote attackers could possibly exploit these vulner-
abilities to execute arbitrary code in the container, by craft-
ing responses to specific network requests. Images based on
the Alpine distribution had the lowest numbers of vulnerabil-
ities, but no significant difference in the numbers of vulnera-
bilities detected in Ubuntu, Debian or CentOS distributions was
observed.

Unsurprisingly, a strong linear relationship is found be-
tween the number of detected vulnerabilities and the number of
packages present in the image (Fig 1-C, r=0.82, p < 10–11). On
average, 1.7 vulnerabilities are introduced for each new package
installation. This observation motivates a systematic review of
software dependencies by application developers, to avoid un-
necessary packages in container images. This is also an argu-
ment in favor of lightweight distributions such as Alpine. Com-
pared to Ubuntu and Debian distributions, CentOS images seem
to have a lower number of vulnerabilities by package on aver-
age, although data is too scarce to conclude.

Effect of image update

Updating container images reduces the number of vulnerabil-
ities by package by a factor of 3 on average, resulting in only
0.6 extra vulnerabilities by package (Fig 1-D, r=0.81, p < 10–7).
Twelve container images are missing on this figure: six of them
could not be updated due to various issues with the package
manager, and six of them are Singularity images that we didn’t
update. In spite of the associated reproducibility challenges,
updating packages therefore appears to be an efficient way to
avoid vulnerabilities. It is not an ultimate solution though, as
a substantial number of vulnerabilities remain.

Effect of minification

Another approach to reduce the number of vulnerabilities in-
volves deleting unnecessary packages from the container im-
ages. It is a tedious operation, as it requires running an actual
data analysis in the container image, to identify the packages
required by the application. In addition, the resulting container
image is only valid for the specific type of analysis used in the
minification process, as other executions might require a dif-
ferent set of packages.

Using the ReproZip-based approach described previously,
we minified 5 different images covering the spectrum of de-
tected vulnerabilities (Fig 1-B). We find that minification re-
duces the number of vulnerabilities, albeit less systematically
than package update. For some container images, such as im-
age S, minification removes more than 70% of the detected
vulnerabilities. For other images, such as image g, it only re-
duces the number of vulnerabilities by less than 1%. The ef-

fect of minification stems from the number of packages that
can be removed, which varies greatly across images. For in-
stance, images g and a have a large number of packages, but
the last majority of them is required by the analysis, which
makes minification less useful. In other cases, a limited num-
ber of unnecessary packages contain a significant number of
vulnerabilities, which makes minification very impactful. This
was the case in images d, S and U, where removing compilers
and kernel headers reduced the number of vulnerabilities by an
important fraction.

Combined effect of image update and minification

Package update and image minification remove different types
of vulnerabilities. The former is efficient against vulnerabil-
ities that have been fixed by package maintainers, while the
latter targets unused software. In two of the five tested images
(images S and U), we find that combining update and minifi-
cation further reduces the number of vulnerabilities compared
to using only one of these processes (Fig 1-B).

Differences between scanners

The results presented so far were obtained with Anchore
(Docker images) and Stools (Singularity images). We scanned
the Docker images with two other tools, Clair and Vuls, to eval-
uate the stability of our results. Important discrepancies were
found between scanners (Fig 2), in particular between Anchore
and the other two scanners, for which Jaccard coefficients as
low as 0.6 were found, meaning that scanning results only
overlapped by 60%. Vuls and Clair appear to be in better agree-
ment, with a Jaccard coefficient of 0.8.

We analyzed these results and explained some reasons be-
hind the observed discrepancies. Out of 4453 vulnerabilities
detected by Anchore only (region 1 in Fig 2), 4443 are found
in the development package of the C library (linux-libc-dev in
Ubuntu and Debian). Clair detects only Debian vulnerabilities
in linux-libc-dev, whereas Vuls do not detect vulnerabilities
in this package at all. Since Anchore ignores Debian vulner-
abilities flagged as minor, it might either detect (region 2) or
ignore (region 3) the Debian vulnerabilities detected by Clair
in linux-libc-dev. The remaining 10 vulnerabilities in region
1 are found in sub-packages of vulnerable packages: they are
correctly reported by Anchore and missed by Vuls and Clair.

Many vulnerabilities in region 3 and 4 are from images
based on Ubuntu 14.04. In the Ubuntu CVE tracker database
used by Clair and Anchore, there are two entries for Ubuntu
14.04: one for LTS (Long-Term Support), a Ubuntu release
with 5 years of technical support, and another one for ESM
(Extended Security Maintenance), a release that provides secu-
rity patches beyond the 5 years covered by LTS. Although all
the scanned images are LTS, Clair refers to the ESM database
entry while Anchore and Vuls refer to the LTS database entry.
The vulnerabilities present in region 3 due to this discrepancy
are incorrectly missed by Anchore and Vuls: they have been
detected in ESM but were already present in LTS. The vulner-
abilities in region 4 are incorrectly missed by Clair: they have
been fixed in ESM but are still present in LTS.

Some vulnerabilities in region 6 are due to bugs in Anchore:
the epochbug ignores vulnerabilities related to package versions
that contain an epoch (:); the out of standard bug ignores vul-
nerabilities that are ignored by the Ubuntu distribution. We
reported these bugs to the Anchore developers through their
Slack channel. Some vulnerabilities in region 6 are also due to
the fact that Anchore intentionally ignores Debian vulnerabili-
ties flagged as minor.

Finally, 32 vulnerabilities that are flagged temporary by the

https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://www.first.org/cvss/specification-document


4 | GigaScience, 20xx, Vol. 0, No. 0

0 500 1000 1500
Number of vulnerabilities

k 
l 

h 
g 
f 
j 

Q 
e 
H 
d 
i 

S 
F 
N 
a 
Z 
b 
c 
Y 
x*
R 
U 
I 

V 
O 
P 
v*
D 
w*
s*
W 
X 
E 
K 
G 
T 
M 
L 
u*
J 

C 
t*
A 
B 

Co
nt

ai
ne

r i
m

ag
e

A

(1)
(1)

(1)

(1)
(1)

(1)
(1)

(7)

(1)

(1)

(1)
(1)

OS distribution
Debian
Alpine
Centos
Ubuntu

Severity
Unknown Negligible Low Medium High Critical (n)

0 500 1000 1500
Number of vulnerabilities

g 

d 

S 

a 

U 

Co
nt

ai
ne

r i
m

ag
e

B Operation applied
None Update Minification Update & Minification

0 100 200 300 400 500 600 700 800 900
Number of packages

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f v
ul

ne
ra

bi
lit

ie
s

C

y=1.7x-108.8
r=0.82

Before update

0 100 200 300 400 500 600 700 800 900
Number of packages

0

200

400

600

800

1000

1200

1400

1600

D

y=0.6x-37.1
r=0.81

After update

Figure 1. Number of vulnerabilities detected by Anchore and Stools in container images. (A) Number of vulnerabilities by container image and severity, showing
hundreds of detected vulnerabilities per image. Images s*,t*,u*,v*,w* and x* are Singularity images scanned by Stools and others are Docker images scanned
using Anchore. (B) Effect of image minification and package update on 5 container images, showing that both techniques are complementary (C) Number of

vulnerabilities by number of packages, showing a strong linear relationship. (D) Number of vulnerabilities by number of packages after package update, showing
that software updates importantly reduce the number of detected vulnerabilities.



| 5

4453
 (1)

1678
 (2)

699
 (3)

657
 (4)

11978
 (5)

2220
 (6)

536
 (7)

Anchore Clair

Vuls

Figure 2. Differences between vulnerabilities detected by the different
scanners. The Jaccard coefficients between the sets of detected vulnerabilities

are quite low, showing important discrepancies between the scanners:
Jaccard(Anchore, Clair) = 0.63, Jaccard(Anchore, Vuls) = 0.59, Jaccard(Vuls,

Clair) = 0.80. Two Ubuntu 17.04 images weren’t included in this comparison
as they cannot be scanned by Vuls.

Debian distribution are reported by Vuls but not by Anchore or
Clair (region 7). The remaining 504 vulnerabilities in this re-
gion are all found in CentOS images. We weren’t able to explain
why they were detected by Vuls only.

Discussion

There is a widespread issue with security vulnerabilities in con-
tainer images used for neuroimaging analyses, and it is likely
to impact other scientific disciplines as well. As shown in our
results, it is common for container images to hold hundreds
of vulnerabilities, including several of critical severity. Con-
tainer images are impacted regardless of the type of analyses
that they support, and the main OS distributions Ubuntu, De-
bian and CentOS are all affected.

Software updates remove about two-thirds of the vulnera-
bilities found and should certainly be considered the primary
solution to this problem. However, in neuroimaging as in
other disciplines, software updates are generally discouraged
because they can affect analysis results by introducing numer-
ical perturbations in the computations [6, 7]. We believe that
this position is not viable from an IT security perspective, and
that it could endanger the entire Big Data processing infras-
tructure, starting with the HPC centers. Instead, we advocate
a more systematic analysis of the numerical schemes involved
in data analyses, which, coupled with software testing, would
make the analyses robust to software updates. As a first step,
the packages impacting the analyses could be specifically iden-
tified and the others updated, which would largely remove vul-
nerabilities.

Ultimately, software updates should even occur at runtime
rather than when the container image is built. Indeed, it is
likely that container images used for scientific data analyses
be built only occasionally, perhaps every few weeks when a
release becomes available, which may not be compatible with
the frequency of required security updates. In fact, there is
no definite reason for the application software release cycle to

be synchronized with security updates, and security updates
shouldn’t be dependent on application software developers. In-
stead, we think it would be relevant for analytics engines to
(1) systematically apply security updates when containers start,
and (2) run software tests provided by application developers,
including numerical tests, before running analyses.

Implementing such a workflow, however, requires a long-
term endeavour to evaluate broadly the stability of data analy-
sis pipelines, and to develop the associated software tests. For
the shorter term, we identified the following recommendations
for application developers to reduce the number of security vul-
nerabilities in container images:

i. Introduce software dependencies cautiously. Software depen-
dencies come with a potential security toll that is often ne-
glected. For instance, it can be tempting to add a complete
toolbox to implement a relatively minor operation in a data
analysis pipeline, such as a data format conversion, while the
same functionality might be available in the existing dependen-
cies of the pipeline, albeit in a less convenient way.

ii. Use lightweight base images such as Alpine Linux. Base im-
ages often come with packages that are useful in personal com-
puters or servers, but not in containers dedicated to a spe-
cific data analysis. In addition, lightweight distributions de-
fine packages with a fine granularity, allowing developers to
avoid installing unnecessary dependencies. For instance, the
compressed size of the Alpine Linux base image on DockerHub
is only 2.7 MB while that of the Ubuntu base image is 27 MB.
iii. Use OS releaseswith long-term support. Security updates are

not provided for OS distributions that reached end of life. When
a given release of a data analysis pipeline is expected to be used
over a long period of time, typically several years as it is com-
mon in neurosciences, the life cycle of the distribution release
should be considered when choosing a base container image.
OS distributions have very different life cycle durations, as long
and short life cycles serve different purposes. For instance,
among RedHat-based distributions, Fedora release a new ver-
sion every 6 months and provide maintenance for about a year,
while CentOS release every 3-5 years and provide maintenance
for 10 years. Similarly, Ubuntu LTS (long-term support) distri-
butions provide free security updates for 5 years, and Debian
stable releases are maintained for 3 years.

iv. Install packages, not files. Vulnerability scanners such as
Anchore, Clair or Vuls detect vulnerabilities from the list of
packages installed in a container image. Therefore, vulnera-
bilities contained in software tools installed through direct file
download rather than through the package manager would go
completely undetected. Domain-specific distributions such as
NeuroDebian or NeuroFedora in neuroimaging are useful in this
respect.

v. Minify container images. The automated minification pro-
cess that we used in our study is unwieldy for a routine use,
as it requires capturing execution traces with ReproZip to re-
construct the graph of package dependencies required for the
analysis. In practice, it would be more practical for software
developers to identify and remove unnecessary dependencies
when they build containers, based on their knowledge of the
application.

vi. Run image scanners during continuous integration. Scanning
container images can be a cumbersome process that could be
asynchronously executed during continuous integration (CI),
through tools such as Travis CI or Circle CI. Including security
scans in CI also allows developers to identify vulnerabilities
quickly, before new software versions are released.

Describing specific attacks against HPC systems that would
exploit vulnerabilities in container images is out of the scope
of our study. We believe that such attacks are likely to exist, al-

http://neuro.debian.net
https://docs.fedoraproject.org/en-US/neurofedora/overview/


6 | GigaScience, 20xx, Vol. 0, No. 0

though attacking HPC systems through containers is challeng-
ing due to their relative isolation from the host system. First,
under the assumption that legitimate HPC users can be trusted,
attackers would have to be remote to the container, either in
the same network or on a remote network. Two main types of
attacks can be envisaged in these conditions: network-based
attacks, exploiting vulnerabilities in network clients installed
in the container, and data-based attacks, exploiting vulnerabil-
ities through the processing of malicious data injected through
third-party systems.

Several types of escalation attacks could be envisaged once
remote attackers gain access to the container, in particular re-
lated to (1) using the resources allocated to the container for
malicious use, such as storing data in the file system or using
CPU cycles, resulting in denial of service for the user running
the container and possibly for other HPC users, and (2) attack-
ing a host network service, for instance a scheduler or a file
system daemon. Exploits in the host kernel to break out of the
container are always possible but unlikely assuming that the
host system is maintained by professional system administra-
tors.

Conclusion

Most container images deployed on HPC clusters for scien-
tific data analyses contain hundreds of security vulnerabilities,
many of which are critical. In the short term, application soft-
ware developers can address this issue by: (1) minifying con-
tainer images, by using lightweight OS distributions and re-
ducing software dependencies, and (2) applying regular secu-
rity updates, which requires using OS distributions with long-
term support. Longer term, data analysis pipelines would ben-
efit from in-depth stability analysis, to ensure that analytical
results are not affected by security updates.

This conclusion is not an alarming message urging HPC
administrators to ban containers from their systems. User-
controlled container images are just one of many end-user ar-
tifacts that could serve as attack vectors, and to our knowledge
no attack has been described to exploit them. More traditional
types of attacks targeting user credentials or network connec-
tions are likely to remain more common.

Availability of Data and Materials

The data and scripts used in this study are available in the
GitHub repository at https://github.com/big-data-lab-team/
container-vulnerabilities-paper with a Jupyter notebook to
regenerate the figures. This manuscript is based on version
0.1 of the repository, available as DOI 10.5281/zenodo.4136599.

Competing interests

The author(s) declare(s) that they have no competing interests.

References

1. Kurtzer GM, Sochat V, Bauer MW. Singularity: Sci-
entific containers for mobility of compute. PloS one
2017;12(5):e0177459.

2. Martin A, Raponi S, Combe T, Di Pietro R. Docker
ecosystem–vulnerability analysis. Computer Communica-
tions 2018;122:30–43.

3. Sultan S, Ahmad I, Dimitriou T. Container Security: Is-
sues, Challenges, and the Road Ahead. IEEE Access
2019;7:52976–52996.

4. Combe T, Martin A, Di Pietro R. To Docker or not to
Docker: A security perspective. IEEE Cloud Computing
2016;3(5):54–62.

5. Gantikow H, Reich C, Knahl M, Clarke N. Providing se-
curity in container-based HPC runtime environments. In:
International Conference on High Performance Computing;
2016. p. 685–695.

6. Gronenschild EH, Habets P, Jacobs HI, Mengelers R, Rozen-
daal N, Van Os J, et al. The effects of FreeSurfer ver-
sion, workstation type, and Macintosh operating system
version on anatomical volume and cortical thickness mea-
surements. PloS one 2012;7(6):e38234.

7. Glatard T, Lewis LB, Ferreira da Silva R, Adalat R, Beck N,
Lepage C, et al. Reproducibility of neuroimaging analyses
across operating systems. Frontiers in neuroinformatics
2015;9:12.

8. Gummaraju J, Desikan T, Turner Y. Over 30% of official
images in DockerHub contain high priority security vulner-
abilities. In: Technical Report; 2015.

9. Shu R, Gu X, Enck W. A Study of Security Vulnerabilities
on DockerHub. In: Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy
CODASPY ’17, New York, NY, USA; 2017. p. 269–280.

10. Zerouali A, Mens T, Robles G, Gonzalez-Barahona JM. On
the relation between outdated Docker containers, severity
vulnerabilities, and bugs. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengi-
neering (SANER) IEEE; 2019. p. 491–501.

11. Gorgolewski KJ, Alfaro-Almagro F, Auer T, Bellec P, Capotă
M, Chakravarty MM, et al. BIDS apps: Improving ease
of use, accessibility, and reproducibility of neuroimag-
ing data analysis methods. PLoS computational biology
2017;13(3):e1005209.

12. Glatard T, Kiar G, Aumentado-Armstrong T, Beck N, Bellec
P, Bernard R, et al. Boutiques: a flexible framework to inte-
grate command-line applications in computing platforms.
GigaScience 2018;7(5):giy016.

13. Rampin R, Chirigati F, Shasha D, Freire J, Steeves V. Re-
proZip: The Reproducibility Packer. Journal of Open Source
Software 2016;1(8):107.

https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://github.com/big-data-lab-team/container-vulnerabilities-paper
https://doi.org/10.5281/zenodo.4136599

